Development of a highly effective low-cost vaporized hydrogen peroxide-based method for disinfection of personal protective equipment for their selective reuse during pandemics
Background: Personal Protective Equipment (PPE) is required to soundly work with organic brokers of bacterial (i.e. Mycobacterium tuberculosis) or viral origin (Ebola and SARS). COVID-19 pandemic particularly has created unexpected public well being challenges together with a international scarcity of PPE wanted for the protection of well being care employees (HCWs). Although ample shares of PPE are presently out there, their crucial scarcity could develop quickly because of enhance in demand and depletion of current provide traces. To empower our HCWs and guarantee their continued safety, proactive measures are urgently required to develop procedures to soundly decontaminate the PPEs to permit their “selective reuse” during contingency conditions.
Methods: Herein, now we have efficiently developed a decontamination method primarily based on vaporized hydrogen peroxide (VHP). We have used a vary of focus of hydrogen peroxide to disinfect PPE (coveralls, face-shields, and N-95 masks). To guarantee a correct disinfection, now we have evaluated three organic indicators specifically Escherichia coli, Mycobacterium smegmatis and spores of Bacillus stearothermophilus, thought-about because the gold customary for disinfection processes. We subsequent evaluated the impression of repeated VHP therapy on bodily options, permeability, and material integrity of coveralls and N-95 masks. Next, we carried out Scanning Electron Microscopy (SEM) to judge microscopic adjustments in fiber thickness of N-95 masks, soften blown layer or coverall physique fits. Considering the truth that any disinfection process ought to be capable to meet native necessities, our research included varied regionally procured N-95 masks and coveralls out there at our institute All India Institute of Medical Sciences (AIIMS), New Delhi, India. Lastly, the sensible utility of VHP method developed herein was ascertained by operationalizing a devoted analysis facility disinfecting used PPE during COVID-19.
Results: Our prototype research present that a single VHP cycle (7-8% Hydrogen peroxide) may disinfect PPE and PPE housing room of about 1200 cubic ft (size10 ft × breadth 10 ft × peak 12 ft) in lower than 10 min, as famous by a full loss of B. stearothermophilus spore revival. The outcomes are constant and reproducible as examined in over 10 cycles in our settings. Further, repeated VHP therapy didn’t lead to any bodily tear, deformity or different considerable change within the coverall and N-95 masks. Our permeation assessments evaluating droplet penetration didn’t reveal any change in permeability post-VHP remedies.
Development of a highly effective low-cost vaporized hydrogen peroxide-based method for disinfection of personal protective equipment for their selective reuse during pandemics
Also, SEM evaluation certainly revealed no vital change in fiber thickness or harm to fibers of coveralls or soften blown layer of N-95 masks important for filtration. There was no change in consumer consolation and expertise following VHP therapy of PPE. Based on outcomes of these research, and parameters developed and optimized, an institutional analysis facility to disinfect COVID-19 PPE is efficiently established and operationalized with greater than 80% restoration price for used PPE post-disinfection.
Conclusions: Our research, subsequently, efficiently establishes the utility of VHP to successfully disinfect PPE for a attainable reuse as per the necessities. VHP therapy didn’t harm coveralls, trigger bodily deformity and likewise didn’t alter material structure of soften blown layer.
Description: Endothelial cells express three different vascular endothelial growth factor (VEGF) receptors, belonging to the family of receptor tyrosine kinases (RTKs). They are named VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1), VEGFR-3 (Flt-4). Their expression is almost exclusively restricted to endothelial cells, but VEGFR-1 can also be found on monocytes, dendritic cells and on trophoblast cells. The flt-1 gene was first described in 1990. The receptor contains seven immunoglobulin-like extracellular domains, a single transmembrane region and an intracellular splited tyrosine kinase domain. Compared to VEGFR-2 the Flt-1 receptor has a higher affinity for VEGF but a weaker signaling activity. VEGFR-1 thus leads not to proliferation of endothelial cells, but mediates signals for differentiation. Interestingly a naturally occuring soluble variant of VEGFR-1 (sVEGFR-1) was found in HUVEC supernatants in 1996, which is generated by alternative splicing of the flt-1 mRNA.
Description: A human-specific splicing variant of vascular endothelial growth factor (VEGF) receptor 1 (Flt1) was discovered, producing a soluble receptor (designated sFlt1-14) that is qualitatively different from the previously described soluble receptor (sFlt1) and functioning as a potent VEGF inhibitor. sFlt1-14 is generated in a cell type-specific fashion, primarily in non-endothelial cells. Notably, in vascular smooth muscle cells, all Flt1 messenger RNA is converted to sFlt1-14, whereas endothelial cells of the same human vessel express sFlt1. sFlt1-14 expression by vascular smooth muscle cells is dynamically regulated as evidenced by its upregulation on coculture with endothelial cells or by direct exposure to VEGF. Increased production of soluble VEGF receptors during pregnancy is entirely attributable to induced expression of placental sFlt1-14 starting by the end of the first trimester. Expression is dramatically elevated in the placenta of women with preeclampsia, specifically induced in abnormal clusters of degenerative syncytiotrophoblasts known as syncytial knots, where it may undergo further messenger RNA editing. sFlt1-14 is the predominant VEGF-inhibiting protein produced by the preeclamptic placenta, accumulates in the circulation, and hence is capable of neutralizing VEGF in distant organs affected in preeclampsia. Together, these findings revealed a new natural VEGF inhibitor that has evolved in humans, possibly to protect non-endothelial cells from adverse VEGF signaling. Furthermore, the study uncovered the identity of a VEGF-blocking protein implicated in preeclampsia.
Human VEGFR1-14/Flt1-14, soluble Recombinant Protein
Description: A human-specific splicing variant of vascular endothelial growth factor (VEGF) receptor 1 (Flt1) was discovered, producing a soluble receptor (designated sFlt1-14) that is qualitatively different from the previously described soluble receptor (sFlt1) and functioning as a potent VEGF inhibitor. sFlt1-14 is generated in a cell type-specific fashion, primarily in non-endothelial cells. Notably, in vascular smooth muscle cells, all Flt1 messenger RNA is converted to sFlt1-14, whereas endothelial cells of the same human vessel express sFlt1. sFlt1-14 expression by vascular smooth muscle cells is dynamically regulated as evidenced by its upregulation on coculture with endothelial cells or by direct exposure to VEGF. Increased production of soluble VEGF receptors during pregnancy is entirely attributable to induced expression of placental sFlt1-14 starting by the end of the first trimester. Expression is dramatically elevated in the placenta of women with preeclampsia, specifically induced in abnormal clusters of degenerative syncytiotrophoblasts known as syncytial knots, where it may undergo further messenger RNA editing. sFlt1-14 is the predominant VEGF-inhibiting protein produced by the preeclamptic placenta, accumulates in the circulation, and hence is capable of neutralizing VEGF in distant organs affected in preeclampsia. Together, these findings revealed a new natural VEGF inhibitor that has evolved in humans, possibly to protect non-endothelial cells from adverse VEGF signaling. Furthermore, the study uncovered the identity of a VEGF-blocking protein implicated in preeclampsia.
Description: VEGF R1 (Flt-1), VEGF R2 (KDR/Flk-1), and VEGF R3 (Flt-4) belong to the class III subfamily of receptor tyrosine kinases (RTKs). All three receptors contain seven immunoglobulin-like repeats in their extracellular domain and kinase insert domains in their intracellular region. They are best known for regulating VEGF family-mediated vasculogenesis, angiogenesis, and lymphangiogenesis. They are also mediators of neurotrophic activity and regulators of hematopoietic development. Human VEGF R2 is thought to be the primary inducer of VEGF-mediated blood vessel growth, while VEGF R3 plays a significant role in VEGF-C and VEGF-D-mediated lymphangiogenesis.
Description: The antibody recognizes solely the endogenous soluble form of mouse vascular endothelial growth factor receptor 2, alos known as CD309, VEGFR2, KDR, protein tyrosine kinase receptor flk-1, and fetal liver kinase-1. The endogenous soluble mouse esFlk-1 generated by alternative splicing consists of the first 6 Ig-like loops followed by the unique C-terminal end: GMEASLGDRIAMP. Flk-1 is a member of the tyrosine protein kinase family, sub-family CSF-1/PDGF, that contains a single pass transmembrane receptor with a protein kinase domain and seven immunoglobulin-like domains in the extracellular region. Flk-1 is expressed at high levels in adult heart, lung, kidney, brain, and skeletal muscle; other tissues express at lower levels. Flk-1 is a receptor for VEGF-A or fully processed VEGF-C; ligand binding plays a key role in vascular development and vascular permeability.
Description: Quantitativesandwich ELISA kit for measuring Human vascular endothelial cell growth factor receptor 1 (VEGFR-1/Flt1) in samples from serum, plasma, tissue homogenates. A new trial version of the kit, which allows you to test the kit in your application at a reasonable price.
Description: Quantitativesandwich ELISA kit for measuring Human vascular endothelial cell growth factor receptor 1 (VEGFR-1/Flt1) in samples from serum, plasma, tissue homogenates. Now available in a cost efficient pack of 5 plates of 96 wells each, conveniently packed along with the other reagents in 5 separate kits.
Description: Endothelial cells express three different vascular endothelial growth factor (VEGF) receptors, belonging to the family of receptor tyrosine kinases (RTKs). They are named VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1), VEGFR-3 (Flt-4). Their expression is almost exclusively restricted to endothelial cells, but VEGFR-1 can also be found on monocytes, dendritic cells and on trophoblast cells. The flt-1 gene was first described in 1990. The receptor contains seven immunoglobulin-like extracellular domains, a single transmembrane region and an intracellular splited tyrosine kinase domain. Compared to VEGFR-2 the Flt-1 receptor has a higher affinity for VEGF but a weaker signaling activity. VEGFR-1 thus leads not to proliferation of endothelial cells, but mediates signals for differentiation. Interestingly a naturally occuring soluble variant of VEGFR-1 (sVEGFR-1) was found in HUVEC supernatants in 1996, which is generated by alternative splicing of the flt-1 mRNA.
Description: Endothelial cells express three different vascular endothelial growth factor (VEGF) receptors, belonging to the family of receptor tyrosine kinases (RTKs). They are named VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1), VEGFR-3 (Flt-4). Their expression is almost exclusively restricted to endothelial cells, but VEGFR-1 can also be found on monocytes, dendritic cells and on trophoblast cells. The flt-1 gene was first described in 1990. The receptor contains seven immunoglobulin-like extracellular domains, a single transmembrane region and an intracellular splited tyrosine kinase domain. Compared to VEGFR-2 the Flt-1 receptor has a higher affinity for VEGF but a weaker signaling activity. VEGFR-1 thus leads not to proliferation of endothelial cells, but mediates signals for differentiation. Interestingly a naturally occuring soluble variant of VEGFR-1 (sVEGFR-1) was found in HUVEC supernatants in 1996, which is generated by alternative splicing of the flt-1 mRNA.
Description: Endothelial cells express three different vascular endothelial growth factor (VEGF) receptors, belonging to the family of receptor tyrosine kinases (RTKs). They are named VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1), VEGFR-3 (Flt-4). Their expression is almost exclusively restricted to endothelial cells, but VEGFR-1 can also be found on monocytes, dendritic cells and on trophoblast cells. The flt-1 gene was first described in 1990. The receptor contains seven immunoglobulin-like extracellular domains, a single transmembrane region and an intracellular splited tyrosine kinase domain. Compared to VEGFR-2 the Flt-1 receptor has a higher affinity for VEGF but a weaker signaling activity. VEGFR-1 thus leads not to proliferation of endothelial cells, but mediates signals for differentiation. Interestingly a naturally occuring soluble variant of VEGFR-1 (sVEGFR-1) was found in HUVEC supernatants in 1996, which is generated by alternative splicing of the flt-1 mRNA.
Description: Endothelial cells express three different vascular endothelial growth factor (VEGF) receptors, belonging to the family of receptor tyrosine kinases (RTKs). They are named VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1), VEGFR-3 (Flt-4). Their expression is almost exclusively restricted to endothelial cells, but VEGFR-1 can also be found on monocytes, dendritic cells and on trophoblast cells. The flt-1 gene was first described in 1990. The receptor contains seven immunoglobulin-like extracellular domains, a single transmembrane region and an intracellular splited tyrosine kinase domain. Compared to VEGFR-2 the Flt-1 receptor has a higher affinity for VEGF but a weaker signaling activity. VEGFR-1 thus leads not to proliferation of endothelial cells, but mediates signals for differentiation. Interestingly a naturally occuring soluble variant of VEGFR-1 (sVEGFR-1) was found in HUVEC supernatants in 1996, which is generated by alternative splicing of the flt-1 mRNA.
Human Vascuoar endothelial cell growth factor receptor 1-VEGFR-1/Flt1-ELISA Kit
We noticed that disinfection course of was profitable persistently and subsequently consider that the VHP-based decontamination mannequin may have a common applicability and utility. This course of could be simply and economically scaled up and could be instrumental in easing international PPE shortages in any biosafety facility or in well being care settings during pandemic scenario equivalent to COVID-19.